skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brearley, Adrian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We assessed the effect of redox conditions on the mobility of lead (Pb), copper (Cu), and iron (Fe) from sediments affected by acid mine drainage (AMD). This was accomplished by integrating laboratory microcosm experiments, aqueous chemistry, diffraction, and electron microscopy. Microcosm experiments underwent 3 consecutive 5 day redox phases: oxic-anoxicoxic. The sediments contained Fe (51,000 mg/kg), Pb (307 mg/kg), and Cu (30 mg/kg), and minerals such as Illite, albite, and goethite. Microscopy analyses revealed that Pb and Cu are associated with Al-silicates and jarosite. Iron release peaked under anoxic conditions (∼250 mg/L), then decreased in the second oxic phase (<70 mg/L). Extraction experiments confirmed that Pb and Cu are water-labile at pH 3.4 (Pb: 27 μg/L exceeding the United States Environmental Protection Agency drinking water action level of 15 μg/L, Cu: 75 μg/L), but less labile at pH 6.4 (Pb: 7 μg/L, Cu: 3 μg/L). DNA sequencing detected metal-tolerant fungal genera (Trichoderma, Fusarium, Penicillium, and Aspergillus) in the sediments. This study provides insights into the biogeochemical processes influencing the lability of metals in AMD-affected sites, which have relevant implications for risk assessment, remediation strategies, and recovery of critical minerals. 
    more » « less
    Free, publicly-accessible full text available December 12, 2026
  2. Free, publicly-accessible full text available April 11, 2026
  3. Abstract Secondary minerals in martian nakhlites provide a powerful tool for investigating the nature, composition, and duration of aqueous activity in the martian crust. Northwest Africa (NWA) 998 crystallized early from the nakhlite magmatic source and has evidence of minimal signatures of the late hydrothermal alteration event that altered the nakhlites. Using FIB‐TEM techniques to study a cumulus apatite grain in NWA 998, we report the first evidence of a submicron‐scale vein consisting of fluorapatite and an SiO2‐rich phase. Fluorapatite grew epitaxially on the walls of an opened cleavage plane of host F‐bearing chlorapatite and the SiO2‐rich phase filled the center of the vein. The presence of nanoporosity and nanometer‐scale amorphous material and the sharp interface between the vein and the host apatite indicate the vein represents a coupled dissolution–reprecipitation process that generated apatite of a different composition that was more stable with the fluid. Using experimental data and diffusion coefficients of Cl in apatite from the literature, we conclude that the vein was caused by a low temperature (~300°C), slightly acidic, F‐, Si‐rich, aqueous fluid that acted as a closed system. Based on the characteristics of the vein (formation by rapid injection of fluid) and the fluid (composition, temperature, pH), and the lack of terrestrial weathering products in our SEM and TEM images, we infer that the vein is pre‐terrestrial in origin. Our observations support the hypothesis that the heat source triggering a hydrothermal system was a low‐shock velocity impact and rule out a magmatic origin. Finally, the vein could have formed from a late‐stage fluid different from that reported in other nakhlites, but formation during the same magmatic event by, for example, a less evolved fluid might also be plausible. 
    more » « less
  4. Doped perovskite metal oxide catalysts of the form A(BxM1-x)O3-δhave been instrumental in the development of solid oxide electrolyzers/fuel cells. In addition, this material class has also been demonstrated to be effective as a heterogeneous catalyst. Co-doped barium niobate perovskites have shown remarkable stability in highly acidic CO2sensing measurements/environments (1). However, the reason for their chemical stability is not well understood. Doping with transition metal cations for B site cations often leads to exsolution under reducing conditions. Many perovskites used for the oxidative coupling of methane (OCM) or the electrochemical oxidative coupling of methane (E-OCM) either lack long term stability, or catalytic activity within these highly reducing methane environments. The Mg and Fe co-doped barium niobate BaMg0.33Nb0.67-xFexO3-δshown activity in E-OCM reactors over long periods (2) (>100 hrs) with no iron metal exsolution observed by diffraction or STEM EDX measurements. In contrast, iron decorated BaMg0.33Nb0.67O3showed little C2 conversion activity. 
    more » « less
  5. Abstract The leitmotifs of magnetic resonance imaging (MRI) contrast agent-induced complications range from acute kidney injury, symptoms associated with gadolinium exposure (SAGE)/gadolinium deposition disease, potentially fatal gadolinium encephalopathy, and irreversible systemic fibrosis. Gadolinium is the active ingredient of these contrast agents, a non-physiologic lanthanide metal. The mechanisms of MRI contrast agent-induced diseases are unknown. Mice were treated with a MRI contrast agent. Human kidney tissues from contrast-naïve and MRI contrast agent-treated patients were obtained and analyzed. Kidneys (human and mouse) were assessed with transmission electron microscopy and scanning transmission electron microscopy with X-ray energy-dispersive spectroscopy. MRI contrast agent treatment resulted in unilamellar vesicles and mitochondriopathy in renal epithelium. Electron-dense intracellular precipitates and the outer rim of lipid droplets were rich in gadolinium and phosphorus. We conclude that MRI contrast agents are not physiologically inert. The long-term safety of these synthetic metal–ligand complexes, especially with repeated use, should be studied further. 
    more » « less